更多>>精华博文推荐
更多>>人气最旺专家

杜慧婷

领域:有问必答网

介绍:然而,2007年我国人着我国经济实力的不断提高,我国人均纸产品的消费量与世界发达国家的差异将逐步缩小,在这个不断缩小差异的过程中,必将伴随我国造纸行业的不断发展。...

刘宇飞

领域:深圳热线

介绍: 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新

利来国际官方网站
本站新公告利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
pgx | 2019-01-21 | 阅读(804) | 评论(700)
2、GB50838-2015第条,敷设电力电缆的舱室,逃生口间距不宜大于200m。【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
6sz | 2019-01-21 | 阅读(194) | 评论(150)
用户服务条款尊敬的用户:您好!欢迎光临文档投稿赚钱网站。【阅读全文】
sdv | 2019-01-21 | 阅读(43) | 评论(386)
因而不善于用理论指导实践,在工作中很难有所创新,在理论学习中,没有很好地坚持理论联系实际,在改造主观世界上下功夫,从而牢固树立为党和人民事业奋斗的信念,因此在思想上出现理想信念有所动摇,在工作上出现干劲松懈,工作责任心、进取心下降的情况,没能及时用科学思想分析出现问题的原由,及时纠正主观认识上出现的偏差。【阅读全文】
4ok | 2019-01-21 | 阅读(732) | 评论(86)
”杭州青少年活动中心也开设有和编程有关的兴趣班,今年招生多达1400多人。【阅读全文】
zg5 | 2019-01-21 | 阅读(900) | 评论(375)
今年6月接到院领导指示,在刘大弘庭长、任进、王军法官的带领下,赶到沙镇蒙台村,处理村民们集结闹事堵车抗法事,现场配合领导给村民群众作了大量耐【阅读全文】
mdv | 2019-01-20 | 阅读(418) | 评论(12)
此外,在生产经验上,林业系统所属的福建顺昌纸板厂是我国第一家全部采用国产设备、利用混合材制化机浆生产强韧箱纸板的生产厂,取得了良好的社会和经济效益。【阅读全文】
zq3 | 2019-01-20 | 阅读(244) | 评论(152)
“每个人都希望有更多的涉猎,希望有更多自己价值观的体系。【阅读全文】
xer | 2019-01-20 | 阅读(322) | 评论(251)
象的寿命可长达70岁以上,小象要经过14—15年才成熟,一只母象一生只能生5—6只小象,因此繁殖率较低。【阅读全文】
利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新,利来国际最给利的老牌最新
wjf | 2019-01-20 | 阅读(731) | 评论(320)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
4tf | 2019-01-19 | 阅读(10) | 评论(630)
②注射活菌③④S型注射加热杀死的S型细菌+R型活菌休内有R、S型活菌注射加热杀死的S型细菌RS(二)艾弗里实验(体内转化实验)S型活菌蛋白质多糖DNA脂类RNA分别与R型活细菌混合培养R型菌R型菌R型菌R型菌R型菌S型菌DNA酶DNA才是使R型细菌产生稳定遗传变化的物质,即DNA才是遗传物质,蛋白质等其它有机物不是遗传物质。【阅读全文】
xpg | 2019-01-19 | 阅读(968) | 评论(50)
以后未来文档产生的下载收益和付费阅读都归作者本人。【阅读全文】
3kl | 2019-01-19 | 阅读(716) | 评论(102)
两年三万元,少儿编程到底学些啥钱报记者调查杭城少儿编程培训热:你的孩子9岁才来学,已经晚了几乎所有培训机构都会提到对孩子升学有帮助,但事实真的如此吗?孩子们在体验编程课。【阅读全文】
r3h | 2019-01-19 | 阅读(477) | 评论(453)
会员可在满足阿里巴巴中国站要求的账户注销条件(如不存在未到期的有效业务等,具体以网站公示或提示的为准)时,通过网站自助服务、致电阿里巴巴中国站客服或其他阿里巴巴中国站支持的方式,主动向阿里巴巴申请关闭其账户。【阅读全文】
tf4 | 2019-01-18 | 阅读(901) | 评论(262)
《流星花园》周一至周三22:00,登陆湖南卫视青春进行时剧场,芒果TV全网独播,22:30会员抢先看,花样繁星仲夏夜追梦恋语,共度浪漫流星夜!责编:王亚南【阅读全文】
yvr | 2019-01-18 | 阅读(598) | 评论(344)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-21

利来娱乐老牌 利来娱乐老牌 利来国际w66 w66利来娱乐公司 利来国际手机版
www.w66.com 利来娱乐帐户 利来国际在钱服务 利来国际娱乐 利来官方网站w66利来
利来国际w66客服 利来国际旗舰厅app 利来娱乐在线平台 www.w66利来国际 利来网上娱乐
利来国际最给利的老牌 利来 利来国际老牌博彩 利来国际w66.com 利来娱乐w66
西盟| 江陵县| 宜兴市| 镇坪县| 保定市| 韶山市| 胶南市| 双城市| 琼中| 乌鲁木齐市| 黔东| 巴东县| 广德县| 龙门县| 海城市| 宁城县| 东明县| 怀远县| 炎陵县| 合肥市| 甘泉县| 台中县| 麟游县| 阜宁县| 古丈县| 饶河县| 尤溪县| 舟曲县| 前郭尔| 高邑县| 德安县| 天等县| 太保市| 息烽县| 潜江市| 阳春市| 宜兴市| 靖远县| 双桥区| 蒙阴县| 酉阳| http://m.16155800.cn http://m.71400757.cn http://m.66266935.cn http://m.70740921.cn http://m.48299843.cn http://m.04395501.cn